

FUSION: Frequency-guided Underwater Spatial Image recOnstructioN

School of Computer Science and Engineering; Center for Human Movement Analytics Jaskaran Singh Walia*, Shravan Venkatraman*, Pavithra L K

Underwater Image Degradation: The FUSION Approach

Challenge: Underwater images suffer from color casts, blurriness, and low contrast due to wavelength-dependent attenuation.

Current Limitations: Most methods rely only on spatial processing, ignoring uneven degradation across RGB wavelengths [1].

We propose **FUSION**, a dual-domain framework for UIE by jointly leveraging **spatial features**, **frequency cues**, and **channel-specific attenuation** awareness.

FUSION processes each color channel stream independently with λ -aware kernels, while being a lightweight architecture (only **0.28M** params).

Our code is publicly available!

FUSION adopts a dual-domain strategy, independently processing spatial and frequency features, then fusing them through dependent processing, followed by a global color recalibration.

Method	PSNR	SSIM	PSNR	SSIM
	EUVP		UIEB	
UGAN	23.32	0.815	26.551	0.807
UGAN-P	23.55	0.814	26.549	0.805
Lit-Net	23.60	0.863	29.477	0.851
DWNet	23.16	0.843	28.654	0.835
FUSION (Ours)	23.71	0.883	28.671	0.862

Qualitative Performance

UIEB Dataset

EUVP Dataset

Ablation Studies

We analyze the effect of each component in the proposed architecture through a detailed ablation study.

[1] H. Wang, Z. Li, Y. Zhang, Y. Wang, and J. Li. Learning hybrid dynamic transformers for underwater image superresolution. Frontiers in Marine Science, 11:1389553, 2024. 3

The FUSION Architecture